Supplementary Material S1 to Mass Transfer Enhancement in Moving Biofilm Structures

Danial Taherzadeh¹
Institute of Water Quality Control,
Technische Universität München, Garching, Germany

Cristian Picioreanu Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

Harald Horn Engler-Bunte-Institut, Chair of Water Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany

Model equations, dimensionless numbers and notations

The dimensionless model equations result by scaling each dimensional quantity with some characteristic value:

• space can be scaled with a characteristic length L_0 (for example, the biofilm head diameter d or an equivalent hydraulic diameter $4A_B/P_B$) and time with a conveniently chosen characteristic time t_0 (for example, the inverse of a streamer characteristic vibration frequency)

vibration frequency) $x^* = \frac{x}{L_0} \qquad y^* = \frac{y}{L_0} \qquad t^* = \frac{t}{t_0}$

• velocities, displacement, stresses and concentrations are scaled with the inlet flow velocity, characteristic length, Young modulus and inlet solute concentration, respectively. The pressure is made dimensionless on the viscous scale:

 $\mathbf{u}^* = \frac{\mathbf{u}}{u_0}$ $p^* = \frac{L_0 p}{\mu_F u_0}$ $\mathbf{d}^* = \frac{\mathbf{d}}{L_0}$ $\mathbf{S}^* = \frac{\mathbf{S}}{E}$ $c_F^* = \frac{c_F}{c_0}$ $c_B^* = \frac{c_B}{c_0}$

In tables S1.1, S1.2, S1.3 and S1.4 the complete formulation of fluid-structure interaction and substrate transport and uptake in biofilm streamers are introduced in both dimensional and also non-dimensional forms. As a result of scaling the model equations, a few dimensionless numbers appear which are lissted in Table S1.5.

Table S1.1: Dimensional and non-dimensional forms of fluid dynamics equations solved on the moving mesh frame with spatial coordinates χ .

Scope	Dimensional equations	Dimensionless equations
$\overline{\Omega_F}$	Incompressible unsteady laminar flow.	
	$\rho_F \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} - \mathbf{u}_G) \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu_F \nabla^2 \mathbf{u}$	$St Re \frac{\partial \mathbf{u}^*}{\partial t^*} + Re \left(\mathbf{u}^* - \mathbf{u}_G^*\right) \cdot \nabla \mathbf{u}^* = -\nabla p^* + \nabla^2 \mathbf{u}^*$
	$\nabla \cdot \mathbf{u} = 0$	$\nabla \cdot \mathbf{u}^* = 0$
	Initial condition: the steady-state solution $\mathbf{u} = \mathbf{u}_{st}$	$\mathbf{u}^* = \mathbf{u}_{st}^*$
Γ_I	Uniform inlet velocity $u_x = u_0$, $u_y = 0$	$u_x^* = 1, u_y^* = 0$
Γ_U , Γ_L	Slip condition $\partial u_x/\partial y = 0$, $u_y = 0$	$\partial u_x^*/\partial y^* = 0, u_y^* = 0$
Γ_O	No viscous forces and fixed zero pressure $\partial u_x/\partial y + \partial u_y/\partial x = 0$, $p = 0$	$\partial u_x^*/\partial y^* + \partial u_y^*/\partial x^* = 0, p^* = 0$
Γ_H	Non-slip condition $\mathbf{u} = 0$	$\mathbf{u}^* = 0$
Γ_{FSI}	Fluid velocity equals the biofilm deformation rate	
	$\mathbf{u} = \frac{d\mathbf{d}}{dt}$	$\mathbf{u}^* = St \frac{d\mathbf{d}^*}{dt^*}$

Table S1.2: Dimensional and non-dimensional forms of biofilm elastodynamics equations solved on the Lagrangian coordinate system ${\bf X}$ associated with the material points.

Scope	Dimensional equations	Dimensionless equations
Ω_B	Geometrically nonlinear isotropically elastic material	
	$\rho_B \frac{d^2 \mathbf{d}}{dt^2} = \nabla \cdot (\mathbf{S} \cdot \mathbf{F})$ $\mathbf{S} = \frac{E \nu}{(1 + \nu_B)(1 - 2\nu_B)} \operatorname{tr} \mathbf{E} \mathbf{I} + \frac{E}{(1 + \nu_B)} \mathbf{E}$ $\mathbf{E} = \frac{1}{2} (\mathbf{E}^T \mathbf{E} \cdot \mathbf{I}) - \mathbf{E} = \mathbf{I} + \nabla \mathbf{d}$	St ² Re $Q(\frac{\rho_F}{\rho_B})\frac{d^2\mathbf{d}^*}{dt^{*2}} = \nabla \cdot (\mathbf{S}^* \cdot \mathbf{F})$ $\mathbf{S}^* = \frac{v_B}{(1+v_B)(1-2v_B)} \operatorname{tr} \mathbf{E} \mathbf{I} + \frac{1}{(1+v_B)} \mathbf{E}$
	$\mathbf{E} = \frac{1}{2}(\mathbf{F}^{T}\mathbf{F} - \mathbf{I}), \mathbf{F} = \mathbf{I} + \mathbf{V}\mathbf{U}$ Initial condition: static system with no displacement and zero displacement rate	
	$\mathbf{d} = 0, \frac{d\mathbf{d}}{dt} = 0$	$\mathbf{d}^* = 0, \frac{d\mathbf{d}^*}{dt^*} = 0$
Ω_H, Γ_H	No displacement $\mathbf{d} = 0$	$\mathbf{d}^* = 0$
Γ_{FSI}	Dynamic continuity of stresses in biofilm and fluid	
	$\mathbf{n} \cdot \boldsymbol{\sigma} = \mathbf{n} \cdot \left[p\mathbf{I} + \mu_F \nabla \mathbf{u} + \mu_F (\nabla \mathbf{u})^T \right] \frac{dv}{dV}$	$\mathbf{n} \cdot \mathbf{\sigma}^* = \mathbf{n} \cdot \left\{ Q \left[p^* \mathbf{I} + \nabla \mathbf{u}^* + (\nabla \mathbf{u}^*)^T \right] \right\} \frac{dv^*}{dV^*}$

Table S1.3: Dimensional and non-dimensional forms of solute transport in fluid equations solved on the moving mesh frame with spatial coordinates χ .

Scope	Dimensional equations	Dimensionless equations	
Ω_F	Unsteady convection and diffusion of a dilute solute		
	$\frac{\partial c_F}{\partial t} = -(\mathbf{u} - \mathbf{u}_G) \cdot \nabla c_F + \nabla \cdot (D \nabla c_F)$	$St Pe \frac{\partial c_F^*}{\partial t^*} + Pe \left(\mathbf{u}^* - \mathbf{u}_G^* \right) \cdot \nabla c_F^* = \nabla^2 c_F^*$	
	Initial condition: the steady-state solution $c_F = c_{F,st}$	$c_F^* = c_{F,st}^*$	
Γ_I	Constant concentration $c_F = c_0$	$c_F^* = 1$	
Γ_U, Γ_L	Insulation $\partial c_F / \partial y = 0$	$\partial c_F^*/\partial y^* = 0$	
Γ_O	No diffusion $\partial c_F / \partial x = 0$	$\partial c_F^*/\partial x^* = 0$	
Γ_H, Γ_{FSI}	Flux continuity $\partial c_F/\partial n = \partial c_B/\partial n$	$\partial c_F^*/\partial n^* = \partial c_B^*/\partial n^*$	

Table S1.4: Dimensional and non-dimensional forms of solute transport and reaction in biofilm equations solved on the Lagrangian coordinate system \mathbf{X} associated with the material points.

Scope	Dimensional equations	Dimensionless equations
Ω_B	Unsteady diffusion and nonlinear (Monod) reaction for a dilute solute	
	$\frac{\partial c_B}{\partial t} = D\nabla^2 c_B + k \frac{c_B}{K + c_B}$	St Pe $rac{\partial c_B^*}{\partial t^*} = abla^2 c_B^* + \Phi^2 rac{c_B^*}{M + c_B^*}$
	Initial condition: the steady-state solution $c_B = c_{B,st}$	$c_B^* = c_{B,st}^*$
Γ_H, Γ_{FSI}	Continuity of solute concentration $c_B = c_F$	$c_B^* = c_F^*$

Table S1.5: Summary of dimensionless numbers

Dimensionless form	Name		
1. Fluid dynamics			
$Re = rac{L_0 u_0 ho_F}{\mu_F}$	Reynolds number		
$St = \frac{L_0}{t_0 u_0}$	Strouhal number		
2. Biofilm Elastodynamic	CS		
$Q = \frac{u_0 \mu_F}{E_B L_0}$	FSI number		
$ au_E^2 = rac{ ho_B L_0^2}{E_B t_0^2} = rac{t_{0,E}^2}{t_0^2} = St^2 Re\Big(rac{ ho_F}{ ho_B}\Big)Q$	FSI time scale (squared)		
3. Solute mass transport in fluid and biofilm			
$Pe = \frac{u_0 L_0}{D}$	Péclet number		
$\Phi^2 = \frac{kL_0^2}{Dc_0}$	Thiele number (squared)		
$M = \frac{K}{c_0}$	Dimensionless Monod number		
$ au_D = rac{L_0^2/D}{t_0} = rac{t_{0,D}}{t_0} = St Pe$	Mass transport time scale		
In addition, when considering the mass transfer in the liquid boundary layer adjacent to the biofilm, from $k_m(c-c_0) = D \partial c/\partial n \big _{\Gamma}$ a Sherwood number can be defined as: $Sh = \frac{k_m L_0}{D} = \frac{L_0 \frac{\partial c}{\partial n} \big _{\Gamma}}{c-c_0}$	Sherwood number		
Usually, Sh is correlated with Re and Sc (Schmidt) numbers, where $Sc = \frac{\mu_F}{\rho_F D}$	Schmidt number		

Nomenclature

Symbol	Description	Units	
Subdomains and boundaries			
Ω_F	Fluid subdomain		
Ω_B	Biofilm subdomain		
Γ_I	Inlet boundary		
Γ_O	Outlet boundary		
Γ_U	Upper wall boundary		
Γ_L	Lower wall boundary		
Γ_H	Biofilm head boundary		
Γ_{FSI}	Biofilm tail boundary (Fluid-Structure Interaction boundary)		
Model va	riables and constants		
c_0	Solute concentration in inlet	$\mathrm{mol}\cdot\mathrm{m}^{-3}$	
c_B	Solute concentration in biofilm	$mol \cdot m^{-3}$	
c_F	Solute concentration in fluid	$mol \cdot m^{-3}$	
d	Biofilm displacement	m	
D	Solute diffusion coefficient	$m \cdot s^{-2}$	
E_B	Biofilm Young's modulus	$kg \cdot m^{-1} \cdot s^{-2}$	
E	Green-Lagrangian strains	-	
\mathbf{F}	Deformation gradient	-	
I	Identity matrix	-	
k	Reaction rate constant	$mol\cdot m^{-3}\cdot s^{-1}$	
k_m	Mass transfer coefficient	$m\cdot s^{-1}$	
K	Monod saturation coefficient	$mol\cdot m^{-3}$	
L_0	Characteristic length	m	
n	Direction normal to boundary	m	
n	Vector normal to boundary	m	
p	Fluid pressure	$kg\cdot m^{-1}\cdot s^{-2}$	
S	Second Piola-Kirchhoff stress tensor	$kg\cdot m^{-1}\cdot s^{-2}$	
t	Time	S	

Symbol	Description	Units
t_0	Characteristic time	S
$t_{0,D}$	Characteristic time for diffusion	S
u_x, u_y	Fluid velocity components	$m \cdot s^{-1}$
u	Fluid velocity	$m \cdot s^{-1}$
\mathbf{u}_G	Mesh velocity	$m \cdot s^{-1}$
v	Volume in spatial frame	m^3
V	Volume in material frame	m^3
<i>x</i> , <i>y</i>	Spatial coordinates	m
X	Material coordinates (Lagrangian frame, reference configuration)	m
μ_F	Fluid dynamic viscosity	$kg \cdot m^{-1} \cdot s^{-1}$
v_B	Poisson's ratio biofilm material	-
$ ho_F$	Fluid density	$kg \cdot m^{-3}$
$ ho_B$	Biofilm density	$kg \cdot m^{-3}$
σ	Cauchy stress in the biofilm	$kg \cdot m^{-1} \cdot s^{-2}$
χ	Spatial coordinates (moving mesh frame)	m
Characteristic dimensionless numbers		
M	Dimensionless Monod number	-
Pe	Péclet number	-
Q	FSI number	-
Re	Reynolds number	-
Sh	Sherwood number	-
St	Strouhal number	-
Φ^2	Thiele number	-
$ au_E$	FSI time scale	-
$ au_D$	Solute diffusion time scale	-